

<u>C</u>onsequences

Module 5: Brielle K Thompson & Michael E Colvin

Workshop: An overview of Structured Decision Making for natural resources, Midwest Fish and Wildlife Conference 2025, St. Louis, MO

Modified from: Fundamentals of Structured Decision Making TWS Conference Workshop 2023 & an Overview of Structured Decision-Making Washington Department of Fish and Wildlife 2022-2023

Source: Jean Fitts Cochrane

The role of science in structured decisions

- Science allows us to make *predictions* about how the world works
- We call the tools we use to make predictions *models*
- Models can take many different forms, but all must support us in making predictions
 - If we choose alternative X, what will the effect be on objective Y?

The consequences step

- Consequences link objectives and alternatives
- Models (in SDM) are tools that help us predict consequences
- Need not be complex in all cases
 - Will I make an 8:30 meeting if I leave home at 7:45?
 - The model is my experience
 - Or the model is Google maps

Simple example – set up

- I need to arrange a flight
- My objectives are:
 - Minimize price
 - Minimize flight duration
 - Minimize number of stops
 - Arrive before noon
 - Maximize quality of service
- I need to make predictions about each of these objectives
- Source of predictions:
 - Google flights: price, flight time, number of stops, and arrival time
 - TripAdvisor: airline service ratings

Simple example – consequences table

Objectives	A + + + : + + + + + +	Desired	Alternatives						
Objectives	Attribute	Direction	1	2	3				
Price	Cost	Ļ							
	Duration	Ļ	*						
Flight time	Number of stops	Ļ	*						
Arrive before noon	Arrival time	threshold							
	Service rating:								
Service	1-5								
	(# of raters)								

Simple example – consequences

Objectives	Attribute	Desired	Alternatives						
Objectives	Altribute	Direction	1	2	3				
Price	Cost		\$558	\$251	\$391				
Flight time	Duration		3h 40m	5h	5h 47m				
	Number of stops		nonstop	1	1				
Arrive before noon	Arrival time	threshold	11:11am	4:40pm	10:57am				
	Service rating:		2	2	3				
Service	1-5		(2121	(233	(1875				
	(# of raters)		raters)	raters)	raters)				

Some Principles of Modeling in SDM

Models should

- 1. Include 'hard data' (e.g., total cost) and subjective assessment (e.g., airline service) as appropriate
- 2. Make the most of available information, including expert judgment
- 3. Report appropriate level of precision
- 4. Incorporate relevant uncertainty (e.g., structural, parametric uncertainty)

Some Principles of Modeling in SDM

In designing a model, the important questions to ask are...

- What will help me make better predictions?
 - Ecological understanding is not the focus unless it improves prediction
 - As simple as possible but not simpler; as complicated as necessary but not more.
- What are the pertinent model variables?
 - Model inputs are essentially the alternatives
 - Model outputs are essentially the objectives
- What uncertainty needs to be included?
 - Focus on uncertainty that affects the decision
 - First model prototype often does not include uncertainty

Influence Diagrams

- Start with an influence diagram to develop a common understanding of the basic components of a model and the relationships between them
- Influence diagram:
 - Directed Acyclic Graph (DAG)
 - Conceptually link the actions to objectives
 - Distinguish between relationships that can and cannot be controlled
 - Begin with objectives and move towards alternatives

Developed by Sarah J. Converse

Example: Black Rail

See Stantial et al. 2023

*BLRA prototype

Example: Black Rail Bayesian Decision Network

Stantial et al. Unpublished manuscript

Modeling step

- A variety of models can be used to generate consequences (i.e. results)
- For example:
 - Population models (*most common)
 - Discrete time population models
 - Integrated population models
 - Occupancy models
 - Etc!
 - Statistical models
 - Empirical data
 - Expert opinion/ expert elicitation
- Conduct rapid prototyping: start simple, adjust, and build up

da Silveira Costa & dos Anjos 2019

Developed by Sarah J. Converse and Brielle K Thompson

Consequence table

- After obtaining results, we can organize the outcomes
- Consequence tables = A convenient way to display predictions for multi-objective decisions
 - Matrix of predictions by objective and alternative
 - Can give us an overall sense of our alternatives
 - Facilitates solving multi-objective decisions

	Alternative 1	Alternative 2	•••	Alternative n
Objective 1	prediction	prediction		prediction
Objective 2	prediction	prediction		prediction
Objective m	prediction	prediction		prediction

versity of Missouri

Example: consequence table

Gregory R and Long G. 2009. Using structured decision making to help implement a precautionary approach to endangered species management. Risk Analysis 29:518-532.

									61 1 2		2	•	3
		ction	U)		11901	so sort	aion me	cial mine	Benettoat	IN Pair ad	te Pall Pall	aillaing	the Pair to Cor
Objective	Attribute	Dir	L L L	_	50.	pres	COL	1ºr	SAL	Str	Wat	S.	- sto
Conservation	% meeting Rec Plan Objective 1	н	2		73%	76%	82%	80%	72%	80%	84%	79%	81%
Conservation	% meeting Rec Plan Objective 2	н	2		32%	33%	33%	34%	31%	35%	34%	33%	34%
Conservation	No of returns in 2010	н	\$ 000		6.3	7.8	12.5	8.7	6.5	8.6	13.2	8.0	8.9
Conservation	No of returns in 2016-2019 (ave)	Н	# 000		16.9	24.3	47.7	31.1	16.8	30.1	53.8	28.7	35.7
Conservation	Probability of extinction	L	N		2.4%	1.1%	0.0%	0.3%	3.4%	0.2%	0.0%	0.4%	0.2%
Conservation	% Enhanced fish 2010	L	N		27%	21%	56%	34%	26%	35%	52%	37%	46%
Conservation	% Enhanced ave fish 2016-2019	L	2		33%	29%	45%	41%	32%	42%	41%	45%	46%
Costs	Total Costs	L	!Yr An Ave \$00	s	171	\$ 309	\$ 588	\$ 488	\$ 171	\$ 523	\$ 588	\$ 328	\$ 500
Catch	Total Downstream	н	# 000	1	1,925	304	6,601	3,391	3,391	4,642	1,925	4,618	4,642
Catch	Total Upstream	Н	\$ 000		637	2,884	504	2,365	2,365	2,335	3,054	2,131	2,335
Catch	Total First Nations	Н	\$ 000		777	739	769	796	796	768	797	768	768
Jobs	Total FTEs	н	# FTEs		1.60	2.80	4.10	3.70	1.60	3.30	4.10	2.50	4.10

Example: consequence table

Post van der Burg, M., and M. E. Colvin. 2024. Using structured decision making to assess management alternatives to inform the 2024 update of the Minnesota Invasive Carp Action Plan. Report 2024-1020, Reston, VA. https://pubs.usgs.gov/publication/ofr20241020

	Moon	Strategy																	
Objective	weight	1	8	12	5	7	6	9	10	2	4	18	13	17	16	14	15	3	11 (optimal strategy)
Decrease invasive carp abundance	0.13	1.75ª	6.31	3.84	5.56	6.25	5.28	4.94	5.94	3.44	4.63	7.69	6.22	8.23	6.94	6.38	7.13	8.63 ^b	6.56
Minimize negative effects on native mussels	0.07	4.38ª	6.50	7.13	6.75	7.38	6.56	6.00	6.69	5.19	6.56	7.38	7.13	7.63	6.97	7.50	6.94	8.50 ^b	6.88
Minimize effects to native fish	0.13	3.63ª	5.56	6.50	5.50	5.81	5.44	5.38	5.75	4.44	5.41	6.56	6.22	6.69	6.34	6.56	6.44	7.38⁵	6.31
Minimize effects to native flora	0.07	6.25ª	6.81	7.81	6.56	6.88	7.06	6.88	7.22	6.69	6.56	7.63	7.56	7.72	7.72	7.44	7.84	8.19 ^b	7.56
Maintain recre- ational opportu- nities	0.09	4.00ª	5.38	5.03	5.03	5.50	5.34	5.63	5.38	5.41	5.88	6.56	7.09	6.69	6.81	6.81	6.81	7.48 ^b	6.50
Minimize nega- tive effects to Minnesota river-based economies	0.07	3.75ª	6.63	5.22	5.56	6.38	5.47	5.81	6.38	5.03	5.19	7.25	7.16	6.94	6.75	6.13	6.63	8.48 ^b	6.75
Minimize carp threats to public safety	0.08	4.00ª	6.44	4.97	5.91	6.19	6.16	6.00	6.63	5.16	5.56	7.88	6.91	7.75	7.13	6.88	7.13	8.04 ^b	6.75
Minimize manage- ment threats to public safety	0.07	9.25⁵	7.63	8.13	7.50	7.50	7.75	7.75	7.50	8.88	8.25	7.38	8.50	7.50	7.38	7.69	7.50	5.94ª	8.25
Minimize negative effect to cultural practices	0.07	5.63ª	6.75	5.81	6.75	7.13	7.13	6.88	6.94	7.25	7.25	6.88	7.38 ^b	7.00	7.13	7.38 ^b	7.13	7.38 ^b	7.00
Maintain access for underserved populations	0.06	7.13ª	8.00	7.91	8.31	8.25	8.50	8.44	8.50	8.38	8.75 ^b	8.13	8.63	8.25	8.50	8.25	8.63	8.38	8.50
Minimize preven- tion and control costs of the action	0.07	8 .75⁵	2.25	5.57	4.44	2.00	4.13	5.56	3.16	7.81	6.50	1.64	4.38	1.64	3.29	5.07	3.29	0.50ª	5.21
Minimize imple- mentation time	0.10	10.00 ^b	2.31	3.81	3.63	2.13	3.31	3.56	2.88	10.00 ^b	6.75	2.13	2.38	2.00	4.13	3.88	4.44	1.13ª	7.13
Total score		5.41	5.75	5.76	5.79	5.81	5.81	5.85	5.91	6.22	6.23	6.36	6.44	6.46	6.50	6.54	6.58	6.66	6.86

^aMaximum score of an objective (shaded yellow).

^bMinimum score of an objective (shaded red).

Case study: (Runge et al. 2011)

• See attachment of case study description (CaseStudyDescription.pdf)

Exercise: Consequences step

- Given the objectives you identified
- And given the alternatives generated
- Identify characteristics of the models we would want to build for this case study, including:
 - Inputs
 - Outputs
 - Model types
- Hint: Use an influence diagram
- Task: Create a consequence table (it is okay to make up answers!)

5 minute break!

• **Objective 1:** Be respectful of non-human life

- Reflects a value that taking life (rainbow trout, an invasive species) should be purposeful and done with good intent
- Measurable attribute (constructed scale):
 - 10-point constructed scale considers the relative degree of respectfulness for the proposed end uses of fish taken
 - 0 = strong lack of respect for the lives of the fish taken
 - 10 = strong respect for the lives of the fish taken
- Model: expert elicitation
 - Representatives from three tribes scored the alternatives on this objective, integrating their cultural understanding

Who should predict consequences?

- Objective 2: Contribute to humpback chub recovery
 - Measurable attribute (natural scale):
 - Probability of the adult humpback chub population remaining above 6000 over the next 30 years
 - Model: Fish community dynamics
 - Dynamics modeled in the Colorado River (LCR) below Glen Canyon Dam with a Population Viability Analysis (three submodels)

- **Objective 3:** Minimize disturbance of wilderness experience as a result of non-native fish management in Grand Canyon NP wilderness
 - Measurable attribute (constructed scale):
 - Penalized user-days/year in the wilderness area during boat/helicopter trips for removal.
 - Staff size*number of days*penalty factors (for activities that result in greater disturbance)
 - Model: Nonnative fish population model
 - Included predictions of how many removal trips would be needed each year; multiply by the average staff size of a removal trip, the average length of a trip, and penalty factors

	Alternative	Respect Life	HBC Recovery	Wilderness	Cost
				Disturbance	
		0-10 scale	P(N>6000)	User-days	M\$/5-yr
		Max	Max	Min	Min
Α	No action	6.00	0.232	0	0
C ₂	LCR removal (lethal)	6.33	0.343	5003	3.17
C ₃	LCR removal (mix)	6.33	0.341	5037	3.53
C ₄	LCR removal (live, boat)	9.67	0.341	5003	3.38
C ₅	LCR removal (live, heli)	9.67	0.341	5154	4.65
D_1	Removal curtain (lethal)	8.00	0.532	6824	3.47
D ₂	Removal curtain (mix)	6.33	0.532	6824	3.98
D ₃	Removal curtain (live)	9.67	0.532	6867	4.36
J_1	Kitchen Sink I	1.67	0.555	6753	3.43
J ₁ '	Kitchen Sink I w/ stock	1.67	0.536	6777	3.62
J ₂	Kitchen Sink II	1.67	0.555	6793	4.08
J ₂ ′	Kitchen Sink II w/ stock	1.67	0.536	6818	4.32
К	Zuni-Hopi-NPS	9.00	0.291	5400	3.03

Runge MC, Bean E, Smith DR, Kokos S. 2011. Non-native fish control below Glen Canyon Dam—report from a structured decision-making project. U.S. Geological Survey Open-File Report 2011-1012, 74 p.