

Tradeoffs

Module 6: Brielle K Thompson & Michael E Colvin

Workshop: An overview of Structured Decision Making for natural resources, Midwest Fish and Wildlife Conference 2025, St. Louis, MO

Modified from: Fundamentals of Structured Decision Making TWS Conference Workshop 2023 & an Overview of Structured Decision-Making Washington Department of Fish and Wildlife 2022-2023

Source: Jean Fitts Cochrane

Tradeoffs

"How much you would give up on one objective in order to achieve gains on another objective" - Gregory et al. 2012

Role of analytical methods in tradeoff analysis

- Identify "best" (optimal) solution
 - Ties together alternatives, objectives, and predicted consequences
 - How do you integrate all the components?
- Easiest with a single objective
- Easiest without uncertainty
- Solution method depends on the structure of the problem

Analytical approaches

	Approach		
Single Objective	 Deterministic optimization 		
Multiple Objectives	 Multiple Attribute Utility Simplification SMART Pareto frontier analysis 	Increased	complexity
	Negotiate among most efficient alternatives		

University of Missouri

Single objective approach:

- Used when we have a single continuous decision variable (i.e., alternatives)
 - e.g., harvest rate, amount of herbicide to apply, size of biocontrol release, etc.
- Predict outcomes (i.e., objective) are a function of the decision variable
- Optimization solution methods:
 - Graphical
 - Closed-formed solutions (calculus/differentiation)
 - Numerical solutions (mathematical search methods)
 - Constrained optimization (mathematical solution)

Single objective approach:

• Graphical optimization:

Single objective approach:

Question: Can you think of an example of a single objective problem?

- Not very common in natural resource management.
- Single objectives are easier to optimize, so we may want to reduce multiple objective problems to make them easier to solve.

Multiple objective tools

 Nearly all natural resource management problems are multiple-objective problems

Multiple objective tools

A. Simplify the problem as much as possible

- 1. Remove dominated alternatives
- 2. Remove irrelevant objectives
- 3. Make even swaps
- B. Reduce to a single objective if possible

C. Negotiate a solution from a set of best compromises D. Evaluate trade-offs explicitly

A. Simplify the problem

1. Remove dominated alternatives:

• i.e., another alternative performs the same or better on all objectives

1. Remove dominated alternatives (another alternative performs the same or better on all objectives)

		Alternatives			
Objectives	Direction	Status quo	Minor repair	Major repair	Re-build
Cost (\$M)	Min				
Environmental Benefit (0-10)	Max				
Disturbance (0-10)	Min				
Silt runoff (k ft ³)	Min				
Water Retention (MG)	Max				

1. Remove dominated alternatives (another alternative performs the same or better on all objectives)

		Alternatives			
Objectives	Direction	Status quo	Minor repair	Major repair	Re-build
Cost (\$M)	Min	0	2	12	20
Environmental Benefit (0-10)	Max	1	3	10	10
Disturbance (0-10)	Min	0	1	7	10
Silt runoff (k ft ³)	Min	5	1	3	3
Water Retention (MG)	Max	41	41	41	39

1. Remove dominated alternatives (another alternative performs the same or better on all objectives)

		Alternatives			Dominated A	Alternative
Objectives	Direction	Status quo	Minor repair	Major repair	Re-build	
Cost (\$M)	Min	0	2	12	20	
Environmental Benefit (0-10)	Max	1	3	10	10	
Disturbance (0-10)	Min	0	1	7	10	
Silt runoff (k ft ³)	Min	5	1	3	3	
Water Retention (MG)	Max	41	41	41	39	versity of M

A. Simplify the problem

- 1. Remove dominated alternatives:
 - i.e., another alternative performs the same or better on all objectives

2. Remove irrelevant objectives:

- i.e., performance measures of that objective does not vary over alternatives
- This isn't to say the objective isn't important to you, just that it doesn't help discern among the alternatives <u>currently considered</u>.

2. Remove irrelevant objective

		Alternatives				
Objectives	Direction	Status quo	Minor repair	Major repair		Alternative
Cost (\$M)	Min	0	2	12	20	
Environmental Benefit (0-10)	Max	1	3	10	10	
Disturbance (0-10)	Min	0	1	7	10	
Silt runoff (k ft ³)	Min	5	1	3	3	
Water Retention (MG)	Max	41	41	41	39	versity of N

2. Remove irrelevant objective

		Alterna				
Objectives	Direction	Status quo	Minor repair	Major repair		Alternative
Cost (\$M)	Min	0	2	12	20	
Environmental Benefit (0-10)	Max	1	3	10	10	
Disturbance (0-10)	Min	0	1	7	10	
Silt runoff (k ft ³)	Min	5	1	3	3	
Water Irrelevant Retention (MG)	t Objective	41	41	41	39	versity of M

• Simplified problem:

		Alternatives				
Objectives	Direction	Status quo	Minor repair	Major repair		
Cost (\$M)	Min	0	2	12		
Environmental Benefit (0-10)	Max	1	3	10		
Disturbance (0-10)	Min	0	1	7		
Silt runoff (k ft ³)	Min	5	1	3		

A. Simplify the problem

- 1. Remove dominated alternatives:
 - i.e., another alternative performs the same or better on all objectives
- 2. Remove irrelevant objectives:
 - i.e., performance measures of that objective does not vary over alternatives
 - This isn't to say the objective isn't important to you, just that it doesn't help discern among the alternatives <u>currently considered</u>.

3. Make even swaps:

• If two objectives are in the same unit, then combine outcomes

Even swaps

Convert silt runoff to cost @ \$0.5M / k ft³

		Alternatives				
Objectives	Direction	Status quo	Minor repair	Major repair		
Cost (\$M)	Min	0	2	12		
Environmental Benefit (0-10)	Max	1	3	10		
Disturbance (0-10)	Min	0	1	7		
Silt runoff (k ft ³)	Min	5	1	3		

Even swaps

Convert silt runoff to cost @ \$0.5M / k ft³

		Alternatives				
Objectives	Direction	Status quo	Minor repair	Major repair		
Cost (\$M)	Min	0	2	12		
Environmental Benefit (0-10)	Max	1	3	10		
Disturbance (0-10)	Min	0	1	7		
Silt runoff (k ft ³)	Min	5 <mark>2.5 M</mark>	<mark>1-</mark> 0.5 М	<mark>3-</mark> 1.5 М		

Even swaps

Convert silt runoff to cost @ \$0.5M / k ft³

		Alternatives				
Objectives	Direction	Status quo	Minor repair	Major repair		
Cost (\$M)	Min	0 + 2.5	2 + 0.5	12 + 1.5		
Environmental Benefit (0-10)	Max	1	3	10		
Disturbance (0-10)	Min	0	1	7		
Silt runoff (k ft ³)						

B. Reduce to a single objective

- Tip: Convert all objectives but one to constraints
 - Example: don't spend more than \$2.5M
 - Keep disturbance at or below 3
 - Then take the maximum environmental benefit

		Alternatives				
Objectives	Direction	Status quo	Minor repair	Major repair		
Cost (\$M)	Min	2.5	2.5	13.5		
Environmental Benefit (0-10)	Max	1	3	10		
Disturbance (0-10)	Min	0	1	7		

niversity of Missouri

C. Negotiate a solution from a set of best compromises

• With \geq two objectives we can do **pareto frontier analysis**

○ = outcome of each alternative

C. Negotiate a solution from a set of best compromises

• With > two objectives we can do pareto frontier analysis

 \bigcirc = outcome of each alternative

If cost and population benefit are deemed equal, we can find the **optimal solution** as the minimum distance between the ideal point (*)

Thompson, Olden, & Converse 2024

Example: Consequence table + tradeoffs

Alternative management strategy,	0	Dominated by X Alternative		
no. segments of removal effort	Suppression (in millions)	Containment (%)	Prevention (in millions)	~
No removals, 0	21.13 M	90.3%	1.15 M	None
Abundance, 1	20.52 M	90.2%	1.15 M	None
Growth, 1	20.83 M	89.7%	1.15 M	None
Edges, 1	20.68 M	90.0%	0.83 M	None
Downstream, 1	20.81 M	90.1%	0.48 M	None
Random, 1	20.61 M	90.0%	1.10 M	None
Abundance, 4	18.82 M	89.6%	1.14 M	None
Growth, 4	20.05 M	87.2%	1.01 M	Downstream, 4
Edges, 4	19.24 M	88.1%	0.48 M	None
Downstream, 4	19.37 M	86.2%	0.18 M	None
Random, 4	19.00 M	88.6%	0.96 M	None
Abundance, 8	16.67 M	85.7%	1.02 M	None
Growth, 8	18.34 M	83.1%	0.58 M	Downstream, 8
Edges, 8	17.92 M	85.1%	0.31 M	Downstream, 8
Downstream, 8	17.32 M	81.4%	0.15 M	None
Random, 8	16.93 M	85.7%	0.83 M	None
Abundance, 16	11.81 M	74.1%	0.67 M	None
Growth, 16	14.25 M	72.9%	0.22 M	Edges, 16
Edges, 16	14.24 M	71.4%	0.22 M	None
Downstream, 16	13.17 M	73.7%	0.15 M	None
Random, 16	12.78 M	78.3%	0.56 M	None

Developed by Brielle K Thompson

D. Evaluate trade-offs explicitly

- Multicriteria decision analysis:
 - Offers tools to evaluate multiple objective problems
- A variety of tools exist (beyond the scope of this workshop)
 - Outranking methods
 - Analytic Hierarchy Process
 - Multi-attribute value/utility theory
 - SMART (simple multi-attribute rating technique)

3-minute intro to MCDA

Case study: (Runge et al. 2011)

• See attachment of case study description (CaseStudyDescription.pdf)

Exercise: Evaluate tradeoffs

Hint: Are there any irrelevant objectives, dominated outcomes, even swaps?

	Alternative	Respect Life	HBC Recovery	Wilderness	Cost
				Disturbance	
		[0-10 scale]	[P(N>6000)]	[User-days]	[M\$/5-yr]
		{Max}	{Max}	{Min}	{Min}
Α	No action	6	0.2	0	0
В	Alternative B	7	0.3	30	2.5
С	Alternative C	6	0.3	40	3
D	Alternative D	9.5	0.3	50	4.5
Ε	Alternative E	9	0.25	60	2

Objective [measurable attribute] {Direction}

The consequence table was inspired by Runge et al. 2011 but the values in the table were altered for simplicity

