Structured Decision Making (SDM) $Pr \rightarrow O \rightarrow A \rightarrow C \rightarrow T \rightarrow \overset{Decide}{\& Act}$ Cheat Sheet

2 Key elements of SDM:

1. Values-focused

focused methods

- 2. Problem decomposition (PrOACT)
 Break problem into components, separating science from values
- Objectives discussed first
 Contrasts with alternative-
- Contrasts with alternative Complete relevant analysis
 - Recompose the parts to make a decision

Problem framing: Creates an explicit and shared understanding of the problem

Secret Formula: "Decision Maker (D) is trying to do X to achieve Y over time Z and in place W considering B."

- D = the Decision maker(s) X = the type(s) of action that needs to be taken Y = the ultimate goal(s)
- Z = the temporal extent of the decision problem W = the spatial extent of the decision problem
- **B** = potential constraints (legal, financial, etc.) and important uncertainties (scientific or other)

Objectives: What the decision maker cares about and wants to achieve

Pieces of an objective = The 'wants' + direction (minimize or maximize) + attribute (the units)

Steps: 1. Transform concerns → objectives, 2. Structure objectives (distinguish types),
 3. Develop measurable attributes

1. Example: Concern = I don't have enough money for the project → Objective = minimize cost

- 2. Types of objectives: Fundamental (basic reason for caring about the decision)
 - Means (intermediate objective to achieve fundamental)
 - Process (concern for how the decision is made)
 - Strategic (higher level/ agency mandate)

3. Measurable attributes: how you measure an objective (*natural, constructed*, or *proxy* scales) *Natural* = directly measurable, *Constructed* = sliding/ relative scale, *Proxy* = correlated with objective

Alternatives: The options for the decision maker	Objective 1	Objective 2	
work independently then as a group, revisit objectives	Action 1A	Action 1B	
Strategy table: Example alternative/strategy: Action 1A + Action 3C	Action 2A	Action 2C	
	Action 3A	Action 3C	

Consequences: measures alternatives (Alt) in terms of objectives (Obj) Tools: modeling, experts, consequence tables,-Alt Obj 1 Obj 2 influence diagrams: Obj 1 # for alt 1 Obj 2 # for alt 1 Alt 1 s = stochastic factor Obj1 Alt1 i1 (e.g., weather) Alt 2 ... i = intermediate factor Alt2 Obi2 s1 **▶** i2 (e.g., predation)

Tradeoffs: give up on one objective to make gains in another <u>Tips:</u> remove irrelevant objectives (performance does not vary over Alts), remove dominated alternatives (another Alt better on all/some Objs), make even swaps (if two Objs are in the same unit → combine) <u>Tools:</u> - Multi Criteria Decision Analysis

best with two objectives)

*Adaptive management = special type of SDM involving learning and iterative decisions